St. Joseph
Air Quality Monitoring Study

Stanley R. Cowan, RS
University of Missouri – Columbia
School of Medicine
Department of Family & Community Medicine

January, 2012
Executive Summary

Secondhand smoke (SHS) was classified in 1992 by the U.S. Environmental Protection Agency (EPA) as a cause of cancer in humans. It contains more than 7,000 chemicals of which more than 250 are known to be poisonous. For such a substance, there is no minimum safe level of exposure. The 2006 U.S. Surgeon General’s Report, reviewing thousands of research studies, finds SHS is a cause for stroke, emphysema, bronchitis, asthma, respiratory infections, Sudden Infant Death Syndrome and other illnesses. SHS is responsible for almost 50,000 deaths per year from heart disease and lung cancer in nonsmokers. The 2006 Surgeon General’s Report concluded that policies for smokefree environments are the most effective method of reducing SHS exposure in public places and workplaces.

The purpose of this study was to sample the air quality in St. Joseph public places and workplaces and compare results to the EPA Air Quality Index. Indoor air quality for fine particulate matter pollution (PM$_{2.5}$ particles) was sampled in 18 various locations on June 17 and December 9, 2011. Sixteen locations allowed smoking indoors while two did not.

Key findings of this study include:

- Particulate matter air pollution for –
 - The 16 smoking-allows locations averaged 128 µg/m3 (EPA rating of “unhealthy”).
 - The two smokefree locations averaged 7µg/m3 (EPA rating of “good”).

The level of particulate matter air pollution was over 18 times higher in places that allowed smoking compared to those where smoking was not allowed.

- Due solely to their occupational exposure, a full-time employee in a St. Joseph public place would be exposed to 200% the EPA’s average annual limit for particulate matter air pollution during an 8-hour workshift.

- On average, only 10% of people were actively smoking in the locations where smoking was permitted. This is 63% lower than the adult smoking prevalence of 28.0% for urban Buchanan County, and refutes the commonly held misperception that a higher percent of hospitality industry customers or employees smoke.

The findings of this study are consistent with those of similar previous studies that found that approximately 90% or more of the fine particle pollution could be attributed to SHS.
Introduction

Secondhand smoke (SHS) contains more than 7,000 chemicals, of which more than 250 are known to be either toxic and/or carcinogenic, and by itself was classified in 1992 by the U.S. Environmental Protection Agency as a human carcinogen.\(^1\) Exposure to SHS is responsible for an estimated 35,000 deaths per year from heart disease and lung cancer in nonsmokers.\(^2\) The U.S. Surgeon General issued reports in 1984 and 2006 concluding SHS was also a cause for stroke, emphysema, bronchitis, asthma, respiratory infections, Sudden Infant Death Syndrome and other illnesses. The Surgeon General also concluded there is no safe level of exposure to SHS.\(^1,3,4\)

With specified exemptions, Missouri state law requires all public places to prohibit smoking unless designated smoking areas are provided. Such designated areas are not to exceed 30% of its entire space. Missouri state law does not preempt local governments from enacting more stringent smokefree ordinances. The current St. Joseph ordinance addressing smoking in public places is Article VI Sections 17-161 through 17-166 and is essentially identical to the state law.

Policies prohibiting smoking are the most effective method for eliminating SHS exposure in public places and workplace environments. While many businesses voluntarily establish smokefree policies, the hospitality industry (including restaurants, bars, bowling alleys, casinos, etc.), representing approximately 10-14% of workplaces, has been slow to enact smokefree policies. Consequently, workers and patrons are exposed to SHS. An increase in state- and city-wide smokefree ordinances across the United States has resulted in declining SHS exposure among the overall U.S. population,\(^5\) but a majority of Missouri municipalities remain without comprehensive smokefree laws.

To protect public health, the U.S. Environmental Protection Agency (EPA) issued National Ambient Air Quality Standards which include fine particulate matter as one of the criteria pollutants. The EPA first issued standards for daily exposure to pollution consisting of particulate matter of 2.5 microns in size (PM\(_{2.5}\)) in 1971 with periodic revisions, the latest in 2006 and currently in a public comment period. Current EPA standards based on review of thousands of peer-reviewed scientific studies recommend exposure during a 24-hour period to be not greater than 35 µg/m\(^3\). Further, over the period of a year a person’s exposure should not have a daily average of more than 15 micrograms per cubic meter (µg/m\(^3\)). EPA assigned levels for PM\(_{2.5}\) ranging from “good” to “hazardous” with accompanying health advisories as presented in Table 1.\(^6\) Because the impact on health is the same regardless of whether the air is in an outdoor or indoor environment, the EPA index is a valuable measure of health risk.

Table 1. U.S. Environmental Protection Agency – Air Quality Index

<table>
<thead>
<tr>
<th>Air Quality</th>
<th>PM(_{2.5}) (µg/m(^3))</th>
<th>Health Advisory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>≤ 15</td>
<td>None</td>
</tr>
<tr>
<td>Moderate</td>
<td>16-35</td>
<td>Unusually sensitive people should consider reducing prolonged or heavy exertion</td>
</tr>
<tr>
<td>Unhealthy for</td>
<td>36-55</td>
<td>People with heart or lung disease, older adults and children should reduce prolonged or heavy exertion</td>
</tr>
<tr>
<td>Sensitive Groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unhealthy</td>
<td>56-150</td>
<td>People with heart or lung disease, older adults and children should avoid prolonged or heavy exertion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Everyone else should reduce prolonged or heavy exertion</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>151-250</td>
<td>People with heart or lung disease should avoid all physical activity outdoors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Everyone else should avoid prolonged or heavy exertion.</td>
</tr>
<tr>
<td>Hazardous</td>
<td>≥ 251</td>
<td>People with heart or lung disease, older adults, and children should remain indoors and keep activity levels low.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Everyone else should avoid all physical activity outdoors.</td>
</tr>
</tbody>
</table>
Methods

Overview
Indoor air quality for fine particulate matter pollution was sampled for 18 public places in St. Joseph on June 17 and December 9, 2011. Sixteen of the locations allowed smoking indoors while two locations did not allow smoking. Particulate matter smaller than 2.5 micrograms (PM$_{2.5}$) was measured. The PM$_{2.5}$ particles are easily inhaled deep into the lungs and can pass into the bloodstream, and are associated with pulmonary and cardiovascular disease and mortality.

Measurement Protocol
An average of 52 minutes was spent in each location to monitor air for data collection. The number of people at the location and the observed number of burning cigarettes were recorded during the air quality sampling period. A sonic measuring device was used to measure room dimensions, enabling unobtrusive calculation of the volume of each location. Active smoker density was calculated by dividing the average number of burning cigarettes by the volume of the room in meters. The number of burning cigarettes was divided by the number of people at the location to determine the percent of people smoking.

A TSI Sidepak AM510 Personal Aerosol Monitor (TSI, Inc., St. Paul, MN) was used to sample and record the levels of particulate matter pollution in the air. The Sidepak uses a built-in sampling pump to draw air through the device, where the particulate matter in the air scatters the light from a laser to assess the real-time concentration of particulate matter smaller than 2.5 micrograms to be recorded as PM$_{2.5}$. The concentrations of particulate matter were recorded as micrograms per cubic meter (µg/m3). The Sidepak was zero-calibrated prior to each use by attaching a HEPA filter according to the manufacturer’s specifications. The Sidepak was set to a one-minute log interval, which averages the previous 60 one-second measurements.

Air quality sampling was conducted discreetly in order to not disturb the normal behavior of workers or patrons. For each location, the first and last minute of logged data were removed because they were averaged with outdoor and/or entryway air. The remaining data points were averaged to provide an average PM$_{2.5}$ concentration within the location.

Descriptive data including the location volume in cubic meters (m3), number of people, number of burning cigarettes, and smoker density (number of burning cigarettes per 100 m3) were recorded for each location and averaged for all locations. Additionally, the results are compared to the EPA Air Quality Index.

Results
The locations were visited in evenings and ranged from 5:30 p.m. to 12:00 a.m. The average time spent per location was 52 minutes (range 42-79 minutes). The average PM$_{2.5}$ levels for the 16 sampled locations that allowed smoking was 128.5 µg/m3 (range: 13.5 – 481.5 µg/m3). The two non-smoking locations sampled had an average PM$_{2.5}$ level of 6.9 µg/m3 (range 5.5 – 8.3 µg/m3). The level of particulate matter air pollution was 18.6 times higher in those locations that allowed smoking compared to those prohibiting smoking. On average, 4.3 cigarettes (range: 0.0 – 32.6 cigarettes) were burning during the monitoring time frame at smoking venues. This represents an overall average of 10.3% of patrons smoking at any given time. Table 2 provides additional details of the monitored venues.
Table 2. Smoking and Smokefree Locations in St. Joseph

<table>
<thead>
<tr>
<th>Location</th>
<th>Active smoker density</th>
<th>% burning cigarettes to # people</th>
<th>Average PM$_{2.5}$ level (µg/m3)</th>
<th>EPA Air Quality Index category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>-</td>
<td>-</td>
<td>8.3</td>
<td>Good</td>
</tr>
<tr>
<td>B*</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
<td>Good</td>
</tr>
<tr>
<td>Average</td>
<td>-</td>
<td>-</td>
<td>6.9</td>
<td>Good</td>
</tr>
<tr>
<td>C</td>
<td>0.24</td>
<td>32.1</td>
<td>51.7</td>
<td>Unhealthy for Sensitive Groups</td>
</tr>
<tr>
<td>D</td>
<td>0.28</td>
<td>13.8</td>
<td>96.2</td>
<td>Unhealthy</td>
</tr>
<tr>
<td>E</td>
<td>1.09</td>
<td>8.6</td>
<td>481.1</td>
<td>Hazardous</td>
</tr>
<tr>
<td>F</td>
<td>0.78</td>
<td>11.6</td>
<td>34.4</td>
<td>Moderate</td>
</tr>
<tr>
<td>G</td>
<td>0.02</td>
<td>0.2</td>
<td>53.1</td>
<td>Unhealthy for Sensitive Groups</td>
</tr>
<tr>
<td>H</td>
<td>0.19</td>
<td>18.1</td>
<td>317.4</td>
<td>Hazardous</td>
</tr>
<tr>
<td>I</td>
<td>0.43</td>
<td>5.1</td>
<td>40.7</td>
<td>Unhealthy for Sensitive Groups</td>
</tr>
<tr>
<td>J</td>
<td>0.31</td>
<td>22.3</td>
<td>45.9</td>
<td>Unhealthy for Sensitive Groups</td>
</tr>
<tr>
<td>K</td>
<td>0.21</td>
<td>10.3</td>
<td>56.8</td>
<td>Unhealthy</td>
</tr>
<tr>
<td>L</td>
<td>2.24</td>
<td>14.1</td>
<td>204.8</td>
<td>Very Unhealthy</td>
</tr>
<tr>
<td>M</td>
<td>0.00</td>
<td>0.0</td>
<td>13.5</td>
<td>Good</td>
</tr>
<tr>
<td>N</td>
<td>0.27</td>
<td>4.9</td>
<td>38.8</td>
<td>Unhealthy for Sensitive Groups</td>
</tr>
<tr>
<td>O</td>
<td>0.02</td>
<td>1.4</td>
<td>19.0</td>
<td>Moderate</td>
</tr>
<tr>
<td>P</td>
<td>0.07</td>
<td>3.9</td>
<td>246.3</td>
<td>Very Unhealthy</td>
</tr>
<tr>
<td>Q</td>
<td>0.13</td>
<td>5.4</td>
<td>179.1</td>
<td>Very Unhealthy</td>
</tr>
<tr>
<td>R</td>
<td>0.32</td>
<td>12.4</td>
<td>177.2</td>
<td>Very Unhealthy</td>
</tr>
<tr>
<td>Average</td>
<td>0.41</td>
<td>10.3</td>
<td>128.5</td>
<td>Unhealthy</td>
</tr>
</tbody>
</table>

*smokefree venues

Figure 1 is a presentation of the air quality data of outdoor, the two non-smoking and the sixteen smoking venues with comparison to the EPA Air Quality Index standards.
Particulate matter pollution is a complex mixture of extremely small particles that when breathed in can reach the deepest regions of the lungs. Exposure to PM$_{2.5}$ is linked to a variety of significant health problems, ranging from aggravated asthma to premature death in people with heart and lung disease. This study found PM$_{2.5}$ pollution to be 18.6 times higher in public places that permitted smoking compared to those that did not allow smoking (128.5 µg/m3 vs. 6.9 µg/m3). The average air quality in the sampled non-smoking locations was classified as “good” by the EPA Air Quality Index.
Quality Index. The sixteen smoking-allowed locations had an average classification of “unhealthy” with 1 classified as “good”, 2 as “moderate”, 5 as “unhealthy for sensitive groups”, 2 as “unhealthy”, 4 as “very unhealthy”, and 2 as “hazardous”.

Note is made that no smoking was seen at one smoking-allowed venue and only one cigarette was being smoked at two other venues during the entire observation period.

The findings of this study are consistent with those of similar previous studies regarding numbers of smokers among customers and employees, and levels of particulate matter air pollution.

Counts of the number of people and of the number of burning cigarettes revealed that on average 10.3% of the people in these public places were actively smoking, which is 63.2% lower than the adult smoking prevalence of 28.0% for urban Buchanan County, Missouri.7

A study of eight hospitality venues in Delaware before and after a statewide smokefree law was implemented found about 90% of the fine particle pollution could be attributed to tobacco smoke.8 Similarly, a study of 22 hospitality venues in western New York found a 90% reduction in PM$_{2.5}$ levels in bars and restaurants and an 84% reduction in large recreation venues.9 Similar findings of reductions of more than 90% of PM$_{2.5}$ levels in public places were reported after several communities in Kentucky implemented smokefree workplace ordinances.10

Other studies have directly assessed the effects of SHS exposure on human health. One study found that respiratory health improved rapidly in a sample of bartenders after a state smokefree workplace law was implemented in California, as well as after national smokefree laws were implemented in Ireland and Scotland.11,12,13 Additional studies found a significant reduction in cotinine (a metabolic byproduct of nicotine) and of polycyclic aromatic hydrocarbons (a known human carcinogen found in SHS) in the bodies of hospitality industry workers or customers.14,15 Experimental studies examining blood chemistries of smokers and nonsmokers find negative effects of even brief (minutes to hours) exposures to SHS on the cardiovascular system.16,17

A “66 casino” study by Repace found that incremental PM$_{2.5}$ pollution from secondhand smoke in approximately half of the smoking-allowed casinos exceeded a level known to impact cardiovascular health in nonsmokers after less than 2 hours of exposure, posing acute health risks to patrons and workers.13 This is of particular importance in that the EPA previously determined in a 2003 publication that even short term exposure to PM$_{2.5}$ air pollution can aggravate irregular heartbeat, set the stage for heart attacks, and for those with heart disease can cause a heart attack with no warning symptoms. Older adults, who comprise a significant proportion of casino customers, are at greater risk as they may have undiagnosed heart or lung disease.18

Still additional studies found a significant reduction in cotinine (a metabolic byproduct of nicotine) and of polycyclic aromatic hydrocarbons (a known human carcinogen found in SHS) in the bodies of bar and/or casino employees or customers.19,20,21 A study of air quality in Pennsylvania casinos found that despite low smoking prevalence and with ventilation rates 50% higher than those previously recommended by engineers for smoking- permissible casinos, levels of polycyclic aromatic hydrocarbons and particulate matter were 4 and 6 times respectively that of outdoor air and cotinine levels increased among customers. This study estimated 6 Pennsylvania casino workers’ deaths annually per 10,000 at risk; a risk 5 times greater than that of Pennsylvania mining disasters.22

With such evidence becoming more established and recognized by policymakers, a resolution was adopted on January 10, 2009 by the Executive Committee of the National Council of Legislators from Gaming States to support 100% smokefree gaming venues as a prerequisite for issuing/renewing gaming licenses (Note: Kansas is a member of this organization, Missouri is not).23 To date, 18 states have laws requiring non-tribal casinos to be smokefree.
Additional studies report an average of a 17% reduction in hospital admissions for acute myocardial infarctions (heart attacks) within the first year after implementation of a smokefree ordinance or law in the communities. Of note in Figure 2 are reports in which hospitalizations for heart attacks were reduced by 28% in Pueblo, Colorado, within the first 18 months after their smokefree ordinance was implemented; and that the decline continued to a 41% reduction within the first 36 months after the time the ordinance was implemented. However, rates in surrounding Pueblo County and adjacent El Paso County, which had no smokefree ordinances, remained virtually flat for the same periods.

Figure 2 – Hospitalizations for Heart Attacks; Pueblo, Colorado 2002-2006

A recurring theme is demonstrated by a growing body of evidence showing that smokefree policies are proven to provide health benefits for both smokers and nonsmokers. Health benefits are especially greater among non-smokers as seen in studies that found reductions of 30% - 60% among non-smokers for hospitalization for heart attack within the first year of law for smokefree workplaces and public places. Further, a recent Swiss study found a 50% reduction for such hospitalizations among people previously diagnosed with coronary heart disease.

Such evidence reinforces the Centers for Disease Control & Prevention recommendation that physicians advise their patients at risk of or with known coronary heart disease to avoid places where they may be exposed to secondhand smoke.

Conclusions

Smoking-allowed public places in St. Joseph had over 18 times the fine particulate matter air pollution of the smokefree public places. Average air quality for smokefree public places was rated “good” by EPA standards, while that of smoking locations was “unhealthy”. Full-time employees in public places that allow smoking are exposed to 200% the established annual EPA exposure limit to protect human health from fine particle air pollution.
Employees and patrons in public places in St. Joseph where smoking is allowed are exposed to unhealthy levels of an air pollutant known to cause heart disease, cancer and other diseases. Peer-reviewed studies have demonstrated that policies prohibiting smoking in public places and workplaces dramatically reduce SHS exposure and improve employee and public health.

References

7. Missouri Department of Health & Senior Services, 2007 County Level Survey, Tobacco Use for Buchanan County Adults, age-adjusted weighted percent, http://health.mo.gov/data/mica/County_level_study/header.php?chkBox=A&cnty=021&profile_type=4&pth=/web/data/County_level_study/#

Lightwood, James, PhD, et.al., “Declines in Acute Myocardial Infarction After Smoke-Free Laws and Individual Risk Attributable to Secondhand Smoke”, Circulation, October 6, 2009; 120:1373-1379

