Festus Air Quality Monitoring Study

Stanley R. Cowan, RS
University of Missouri – Columbia
School of Medicine
Department of Family & Community Medicine

March xx, 2010
Executive Summary

Secondhand smoke (SHS) was classified in 1992 by the U.S. Environmental Protection Agency (EPA) as a cause of cancer in humans. It contains more than 4,800 chemicals of which more than 250 are known to be toxic. For such a substance, there is no minimum safe level of exposure. The 2006 U.S. Surgeon General’s Report, reviewing thousands of research studies, finds SHS is a cause for stroke, emphysema, bronchitis, asthma, respiratory infections, Sudden Infant Death Syndrome and other illnesses. SHS is responsible for almost 50,000 deaths per year from heart disease and lung cancer in nonsmokers. The 2006 Surgeon General’s Report concluded that policies for smokefree environments are the most effective method of reducing SHS exposure in public places and workplaces.

The purpose of this study was to sample the air quality in public places that have smokefree policies and those that permit smoking, and compare results to the EPA Air Quality Index. Indoor air quality for fine particulate matter pollution (PM$_{2.5}$ particles) was sampled for six Festus restaurants, bars and public entertainment venues on February 26 and March 8, 2010. Four of those places allowed smoking indoors while two had smokefree policies.

Key findings of this study include:

- Particulate matter air pollution for the four public places that allowed smoking averaged 185 µg/m3 (EPA rating of “very unhealthy”) even though an average of only 1.8 cigarettes were being smoked at any given time. The two public places that did not allow smoking averaged 12 µg/m3 (EPA rating of “good”). The level of particulate matter air pollution was over 15 times higher in places that allowed smoking compared to those that were smokefree.

- Due solely to their occupational exposure, a full-time employee in one of these public places that allowed smoking would exceed the EPA’s average annual limit for particulate matter air pollution by 280%.

- On average, only 13% of people were actively smoking in the public places where smoking was permitted. This is less than two-thirds the 22.4% adult smoking prevalence in Jefferson County, and refutes the commonly held misperception that a high percent of employees or customers in bars or public recreational venues smoke.

- Fewer than four burning cigarettes can create levels of pollution to the degree to be classified as “hazardous” or “significant harm” by the EPA.

The findings of this study are consistent with those of similar previous studies that found that over 90% of the fine particle pollution could be attributed to SHS.
Introduction

Secondhand smoke (SHS) contains more than 4,800 chemicals, of which more than 250 are known to be toxic or carcinogenic, and by itself was classified in 1992 by the U.S. Environmental Protection Agency as a human carcinogen. Exposure to SHS is responsible for an estimated 35,000 deaths per year from heart disease and lung cancer in nonsmokers. The U.S. Surgeon General issued reports in 1984 and 2006 concluding SHS was also a cause for stroke, emphysema, bronchitis, asthma, respiratory infections, Sudden Infant Death Syndrome and other illnesses. The Surgeon General also concluded there is no safe level of exposure to SHS.

Current Missouri law allows for smoking in most indoor workplaces. Policies prohibiting smoking are the most effective method for eliminating SHS exposure in public places and workplace environments. While many businesses voluntarily establish smokefree policies, the hospitality industry (bars, restaurants, bowling alleys, etc.), representing approximately 10-14% of workplaces, has been slow to enact smokefree policies. Consequently, workers and patrons are exposed to SHS. An increase in state- and city-wide smokefree ordinances across the United States has resulted in declining SHS exposure among the overall U.S. population, but a majority of Missouri municipalities remain without comprehensive smokefree laws.

To protect public health, the U.S. Environmental Protection Agency (EPA) issued National Ambient Air Quality Standards which include fine particulate matter as one of the criteria pollutants. The EPA first issued standards for daily exposure to pollution consisting of particulate matter of 2.5 microns in size (PM$_{2.5}$) in 1971 with periodic revisions, the latest in 2006 and currently in a public comment period. Current EPA standards based on review of thousands of peer-reviewed scientific studies recommend exposure during a 24-hour period to be not greater than 35 µg/m3. Further, over the period of a year a person’s exposure should not have a daily average of more than 15 micrograms per cubic meter (µg/m3). EPA assigned levels for PM$_{2.5}$ ranging from “good” to “hazardous” with accompanying health advisories as presented in Table 1. Because the impact on health is the same regardless of whether the air is in an outdoor or indoor environment, the EPA index is a valuable measure of health risk.

Table 1. U.S. Environmental Protection Agency – Air Quality Index

<table>
<thead>
<tr>
<th>Air Quality</th>
<th>PM$_{2.5}$ (µg/m3)</th>
<th>Health Advisory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>≤ 15</td>
<td>None</td>
</tr>
<tr>
<td>Moderate</td>
<td>16-35</td>
<td>Unusually sensitive people should consider reducing prolonged or heavy exertion</td>
</tr>
<tr>
<td>Unhealthy for Sensitive Groups</td>
<td>36-55</td>
<td>People with heart or lung disease, older adults and children should reduce prolonged or heavy exertion</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>56-150</td>
<td>People with heart or lung disease, older adults and children should avoid prolonged or heavy exertion. Everyone else should reduce prolonged or heavy exertion</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>151-250</td>
<td>People with heart or lung disease should avoid all physical activity outdoors. Everyone else should avoid prolonged or heavy exertion.</td>
</tr>
<tr>
<td>Hazardous</td>
<td>≥ 251</td>
<td>People with heart or lung disease, older adults, and children should remain indoors and keep activity levels low. Everyone else should avoid all physical activity outdoors.</td>
</tr>
</tbody>
</table>
The Festus Air Quality Monitoring Study examined indoor air quality in a sampling of smokefree and smoking-permitted public places in Festus, Missouri, to assess the relation between smoking and indoor air pollution. Air quality findings were compared to the EPA Air Quality Index.

Methods

Overview
Indoor air quality for fine particulate matter pollution was sampled for six Festus restaurants and bars on February 22 and March 8, 2010. Particulate matter smaller than 2.5 micrograms (PM$_{2.5}$) was measured. The PM$_{2.5}$ particles are easily inhaled deep into the lungs, are associated with pulmonary and cardiovascular disease and mortality. These venues provide variation in type of public place, size of venue, and location. Four of the places allowed smoking indoors while two had smokefree policies.

Measurement Protocol
An average of 51 minutes was spent in each public place to monitor air for data collection. The number of people inside the venue and the observed number of burning cigarettes were recorded every 10 minutes during the air quality sampling period. A Stanley IntelliMeasure ultrasonic distance estimator (The Stanley Works, New Britain, CT) was used to measure room dimensions, enabling unobtrusive calculation of the volume of each venue. Active smoker density was calculated by dividing the average number of burning cigarettes by the volume of the room in meters. The number of burning cigarettes was divided by the number of people at the venue in 10-minute intervals to determine the percent of people smoking within a venue at any particular time.

A TSI Sidepak AM510 Personal Aerosol Monitor (TSI, Inc., St. Paul, MN) was used to sample and record the levels of particulate matter pollution in the air. The Sidepak uses a built-in sampling pump to draw air through the device, where the particulate matter in the air scatters the light from a laser to assess the real-time concentration of particulate matter smaller than 2.5 micrograms to be recorded as PM$_{2.5}$. The concentrations of particulate matter were recorded as micrograms per cubic meter (μg/m3). The Sidepak was zero-calibrated prior to each use by attaching a HEPA filter according to the manufacturer’s specifications. The Sidepak was set to a one-minute log interval, which averages the previous 60 one-second measurements.

Air quality sampling was conducted discreetly in order to not disturb the normal behavior of workers or patrons. Study staff ordered food or beverages and assumed normal seating positions in a venue. The monitor was generally located on a table so the air being sampled was within the sitting occupants’ normal breathing zone. For each public place, the first and last minute of logged data were removed because they were averaged with outdoor and entryway air. The remaining data points were averaged to provide an average PM$_{2.5}$ concentration within the public place.

Descriptive data including the venue volume in cubic meters (m3), number of people, number of burning cigarettes, and smoker density (number of burning cigarettes per 100 m3) were recorded for each public place and averaged for all public places. Additionally, the results are compared to the EPA Air Quality Index.

Results
The locations were visited on a weekday during mid-day (11 a.m. – 2 p.m) or evening (6:45 p.m. – 10 p.m.). The average time spent per location was 51 minutes (range 40-62 minutes). Four of the
sampled public places allowed smoking and PM$_{2.5}$ levels in these venues averaged 185.4 µg/m3 (range: 29.4 – 550.7 µg/m3). The two smokefree venues sampled had an average PM$_{2.5}$ level of 11.9 µg/m3 (range: 7.5 – 16.2 µg/m3). The level of particulate matter air pollution was 15.6 times higher in those public places that allowed smoking compared to the smokefree venues. On average, 1.8 cigarettes (range: 0 – 5 cigarettes) were burning during the monitoring timeframe at smoking venues. This represents an overall average of 13.3% of patrons. Table 2 provides additional details of the monitored venues.

Table 2. Smokefree and Smoking Establishments in Festus

<table>
<thead>
<tr>
<th>Public Place</th>
<th>Volume m3</th>
<th>Average # people</th>
<th>Average # burning cigarettes</th>
<th>Active smoker density</th>
<th>% burning cigarettes to # people</th>
<th>Average PM$_{2.5}$ level (µg/m3)</th>
<th>EPA Air Quality Index category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOKEFREE ESTABLISHMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest A</td>
<td>271</td>
<td>21.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.5</td>
<td>Good</td>
</tr>
<tr>
<td>Rest B</td>
<td>805</td>
<td>32.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.2</td>
<td>Moderate</td>
</tr>
<tr>
<td>Average</td>
<td>538</td>
<td>26.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.9</td>
<td>Good</td>
</tr>
<tr>
<td>SMOKING ESTABLISHMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest C</td>
<td>252</td>
<td>6.0</td>
<td>2.7</td>
<td>1.06</td>
<td>45.2</td>
<td>104.6</td>
<td>Unhealthy</td>
</tr>
<tr>
<td>Rest D</td>
<td>816</td>
<td>10.2</td>
<td>0</td>
<td>0.00</td>
<td>0.0</td>
<td>29.4</td>
<td>Moderate</td>
</tr>
<tr>
<td>Rest/Bar A</td>
<td>192</td>
<td>10.3</td>
<td>1.0</td>
<td>0.52</td>
<td>9.2</td>
<td>56.8</td>
<td>Unhealthy</td>
</tr>
<tr>
<td>Bar A</td>
<td>2808</td>
<td>28.4</td>
<td>3.6</td>
<td>0.11</td>
<td>13.1</td>
<td>550.7</td>
<td>Significant Harm</td>
</tr>
<tr>
<td>Average</td>
<td>1017</td>
<td>13.7</td>
<td>1.8</td>
<td>0.42</td>
<td>13.3</td>
<td>185.4</td>
<td>Very Unhealthy</td>
</tr>
</tbody>
</table>
Figure 1 is a presentation of the air quality data of the two smokefree and four smoking venues with comparison to the EPA Air Quality Index standards.

Figure 1 – Air Quality Measures for Festus, Feb-Mar, 2010

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>PM$_{2.5}$</th>
<th>Air Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest A*</td>
<td>11.9 µg/m3</td>
<td>Good</td>
</tr>
<tr>
<td>Rest B*</td>
<td>185.4 µg/m3</td>
<td>Very Unhealthy</td>
</tr>
<tr>
<td>Rest C</td>
<td>30.6 µg/m3</td>
<td>Unhealthy</td>
</tr>
<tr>
<td>Rest D*</td>
<td>75.5 µg/m3</td>
<td>Unhealthy</td>
</tr>
<tr>
<td>Bar A</td>
<td>300 µg/m3</td>
<td>Hazardous</td>
</tr>
</tbody>
</table>

NOTE: *Restaurants A and B are smokefree
A Restaurant had no smokers

Discussion

Particulate matter pollution is a complex mixture of extremely small particles that when breathed in can reach the deepest regions of the lungs. Exposure to PM$_{2.5}$ is linked to a variety of significant health problems, ranging from aggravated asthma to premature death in people with heart and lung disease. This study found PM$_{2.5}$ pollution to be 15.6 times higher in public places that permitted smoking compared to a smokefree public place (185.4 µg/m3 vs. 11.9 µg/m3). The average air quality in the sampled smokefree public places was classified as “good” by the EPA Air Quality Index. Of the four smoking-allowed venues: one had air quality that classified as “moderate”; two as “unhealthy”; and one as “significant harm”.

Counts of the number of people and of the number of burning cigarettes conducted every 10 minutes revealed that on average only 13.3% of the people in these public places were actively smoking at any given time, less than two-thirds (59%) the adult smoking prevalence of 22.4% for...
Jefferson County. Despite commonly held misperceptions that a high percent of employees or customers in bars or public recreational venues smoke, this study finds only an average of 1.8 cigarettes were actually smoked at any given time; and yet, these few cigarettes create levels of pollution to the degree to be rated as “very unhealthy” per the EPA index.

The findings of this study are consistent with those of similar previous studies. A study of eight hospitality venues in Delaware before and after a statewide smokefree law was implemented found about 90% of the fine particle pollution could be attributed to tobacco smoke. Similarly, a study of 22 hospitality venues in western New York found a 90% reduction in PM2.5 levels in bars and restaurants and an 84% reduction in large recreation venues (e.g., bingo halls, bowling alleys). Similar findings of reductions of more than 90% of PM2.5 levels in public places were reported after several communities in Kentucky implemented smokefree workplace ordinances. The current study in Festus finds 95% lower particulate matter pollution in the smokefree public venue compared to those public venues that allow smoking.

Other studies have directly assessed the effects of SHS exposure on human health. One study found that respiratory health improved rapidly in a sample of bartenders after a state smokefree workplace law was implemented in California, as well as after national smokefree laws were implemented in Ireland and Scotland. Additional studies found a significant reduction in cotinine (a metabolic byproduct of nicotine) and of polycyclic aromatic hydrocarbons (a known human carcinogen found in SHS) in the bodies of hospitality industry workers or customers. Experimental studies examining blood chemistries of smokers and nonsmokers find negative effects of even brief (minutes to hours) exposures to SHS on the cardiovascular system.

Additional studies report an average of a 17% reduction in hospital admissions for acute myocardial infarctions (heart attacks) within the first year after implementation of a smokefree ordinance or law in the communities. Of note are reports in which hospitalizations for heart attacks were reduced by 28% in Pueblo, Colorado, within the first 18 months after their smokefree ordinance was implemented; and that the decline continued to a 41% reduction within the first 36 months after the time the ordinance was implemented. However, rates in surrounding Pueblo County and adjacent El Paso County, which had no smokefree ordinances, remained virtually flat for the same periods.

A recurring theme is demonstrated by a growing body of evidence showing that smokefree policies are proven to provide health benefits for both smokers and nonsmokers. Health benefits are especially greater among non-smokers as seen in studies that found reductions of 30% - 60% among non-smokers for hospitalization for heart attack within the first year of law for smokefree workplaces and public places. Further, a recent Swiss study found a 50% reduction for such hospitalizations among people previously diagnosed with coronary heart disease. Such evidence reinforces the Centers for Disease Control & Prevention recommendation that physicians advise their patients at risk of or with known coronary heart disease to avoid places where they may be exposed to secondhand smoke.

Current city ordinance for Festus does not address smoking in public places within the city.

Conclusions

Public places in Festus allowing smoking had more than 15 times the fine particulate matter air pollution of a smokefree public place. Average air quality was rated “good” by EPA standards only in the public places that were smokefree. Employees in public places that allow smoking are
exposed to 280% the established annual EPA exposure standard to protect human health from fine particle air pollution.

This study demonstrates that hospitality workers and customers in Festus public places and workplaces where smoking is allowed are exposed to hazardous levels of an air pollutant known to cause heart disease, cancer and other diseases. Peer-reviewed studies have demonstrated that policies prohibiting smoking in public places and workplaces dramatically reduce SHS exposure and improve employee and public health.

References

20 Cronin, E, Kearney P, Kearney P, Sullivan P. Impact of a national smoking ban on the rate of admissions to hospital with acute coronary syndromes. European Society of Cardiology 2007 Congress; September 4, 2007; Vienna, Austria. Poster 3506. [submitted by Dr Edward Cronin of Cork University for publication in peer-reviewed journal]

25 Lightwood, James, PhD, et al., “Declines in Acute Myocardial Infarction After Smoke-Free Laws and Individual Risk Attributable to Secondhand Smoke”, Circulation, October 6, 2009; 120:1373-1379

